Existence and non-existence of solutions to the coboundary equation for measure-preserving systems

نویسندگان

چکیده

Abstract A fundamental question in the field of cohomology dynamical systems is to determine when there are solutions coboundary equation: $$ \begin{align*} f = g - \circ T. \end{align*} In many cases, T given be an ergodic invertible measure-preserving transformation on a standard probability space $(X, {\mathcal B}, \mu )$ and contained $L^p$ for $p \geq 0$ . We extend previous results by showing any measurable that non-zero set positive measure, class with solution meager (including case where $\int _X f\,d\mu ). From this fact, natural arises: , does always exist pair ? regards question, our main as follows. Given function such $f(x) g(x) g(Tx)$ almost every (a.e.) $x\in X$ if only _{f> 0} \int _{f < $ (whether finite or $\infty mean-zero $f \in L^p(\mu 1$ $g L^{p-1}(\mu g( Tx a.e. $x some sense, existence result best possible. For exists dense $G_{\delta }$ everywhere, then \notin L^q(\mu $q> p Finally, it shown we cannot expect moments L^1(\mu particular, $\lim _{x\to \infty } \phi (x) transfer satisfies: \int_{X} ( | )\,d\mu \infty.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...

متن کامل

Existence and non-existence of solutions for an elliptic system

We study the existence of positive solutions for a system of two elliptic equations of the form  −∆u = a1(x)F1 (x, u, v) in Ω −∆v = a2(x)F2 (x, u, v) in Ω u = v = 0 on ∂Ω where Ω ⊂ RN (N ≥ 2) is a bounded domain in RN with a smooth boundary ∂Ω or Ω = RN (N ≥ 3). A non-existence result is obtained for radially symmetric solutions. Our proofs are based primarily on the sub and super-solution met...

متن کامل

Qualitative Properties and Existence of Solutions for a Generalized Fisher-like Equation

This paper is devoted to the study of an eigenvalue second order differential equation, supplied with homogenous Dirichlet conditions and set on the real line. In the linear case, the equation arises in the study of a reaction-diffusion system involved in disease propagation throughout a given population. Under some relations upon the real parameters and coefficients, we present some existence ...

متن کامل

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR CERTAIN NON-LINEAR DIFFERENTIAL EQUATIONS

Here we consider some non-autonomous ordinary differential equations of order n and present some results and theorems on the existence of periodic solutions for them, which are sufficient conditions, section 1. Also we include generalizations of these results to vector differential equations and examinations of some practical examples by numerical simulation, section 2. For some special cases t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 2022

ISSN: ['0143-3857', '1469-4417']

DOI: https://doi.org/10.1017/etds.2022.29